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Abstract

The present paper describes a new method of de-

sign decomposition for structural analysis and optimiza-.

tion. For this method, the structure is divided into sub-
structures where each substructure has its structural re-
sponse described by a structural-response subproblem,
and its structural sizing determined from a structural-
sizing subproblem. The structural responses of sub-
structures that have rigid body modes when separated
from the remainder of the structure are further decom-
posed into displacements that have no rigid body com-
ponents, and a set of rigid body modes. The structural-
response subproblems are linked together through forces
determined within a structural-sizing coordination sub-
problem which also determines the magnitude of any
rigid body displacements. Structural-sizing subprob-
lems having constraints local to the substructures are
linked together through penalty terms that are deter-
mined by a structural-sizing coordination subproblem.
All the substructure structural-response subproblems
are totally decoupled from each other, as are all the sub-
structure structural-sizing subproblems, resulting in the
significant potential for use of parallel solution methods
for these subproblems.

Introduction

Nonlinear mathematical programming (NLP) is ex-
tensively used for optimal structural sizing in struc-
tural design. The most computationally efficient NLP
methods at present incorporate approximation con-
cepts, such as developed in reference 1, that require
both the structural response of the entire structure and
the response sensitivity derivatives with respect to all
the design variables. These approximation-based NLP
structural-sizing methods have been very successful and
are implemented in several commercial structural anal-
ysis codes.

Further improvements in the computational effi-
ciency of NLP structural-design methods are desired,
especially for the detail design of structures requiring a
large number of design variables and constraints. One
approach to the solution of large problems is to decom-
pose a large problem into a set of smaller subproblems.
If most of the smaller subproblems can be solved sepa-
rately and in parallel, the time required to find the opti-
mum design can be significantly reduced. By repeating
this decomposition process at the subproblem level, a
multilevel decomposition (ref. 2 and references therein)
can be obtained. One concern in the decomposition of

an optimum design problem is whether any solution ex-
ists to the decomposed problem. If a solution exists,
another concern is whether this solution to the decom-
posed problem is also a solution to the original prob-
lem. The present paper addresses these concerns, and
develops a formal method for solving structural-design
problems which are decomposed using substructuring.

Specifically, derivations are presented for a decom-
position of the minimum weight design process when
each design constraint depends only on the design vari-
ables and structural response of a single substructure.
Stress and local buckling constraints and certain dis-
placement constraints fall into this category of de-
sign constraint. For this decomposition method, the
structure is partitioned into substructures in a man-
ner that allows for solution of the structural response
and the structural optimization on a substructure-by-
substructure basis. The present decomposition method
also has several unique aspects that allow for efficient
computation, much of which can be done in parallel.
The theory of the decomposition method is discussed
utilizing a two-substructure example and the derivation
for an arbitrary number of substructures is presented in
the appendix.

Theory

The method of determining the structural response
of a structure that is decomposed into substructures is
presented first. This response solution method is then
utilized in formulating a set of Equilibrium Program-
ming (EP) subproblems that determine the optimal de-
sign. The derivation which follows demonstrates the
method using two substructures which are assumed to
have a linear elastic response. The appendix summa-
rizes the method for an arbitrary number of substruc-
tures.

Decomposition of the Structural Response

The present structural-response decomposition
method has some similarity to the work presented in
reference 3 in that the present method is a substruc-
turing approach which utilizes Lagrange multipliers to
enforce compatible displacements at the interfaces be-
tween substructures. Four salient features characterize
the present method. The structural response of each
substructure is decomposed into the rigid body mo-
tions (referred to as “modes” herein) of the substruc-
ture, and displacements that have strain energy but no
rigid body motion. Secondly, an augmented stiffness



matrix is formed for each substructure. These stiff-
ness matrices are symmetric, and can be factored in-
dependently and, computationally, in parallel. Thirdly,
a structural-response coordination problem determines
the internal forces between the substructures (i.e., the
Lagrange multipliers), and the rigid body modes. The
structural-response coordination problem requires the
factored, augmented stiffness matrices of the substruc-
tures, and results in a system of linear equations with
the number of degrees-of-freedom equal to the num-
ber of shared degrees-of-freedom between substructures
plus the total number of substructure rigid body modes.
Lastly, once the internal forces between the substruc-
tures are determined, the displacements having strain
energy can be determined.

The simple wing structure finite element model in
figure 1 is utilized to demonstrate the derivation of the
present decomposition method. The model shown in
the figure is decomposed into two substructures, the
second of which has rigid body modes. Only one load-
ing condition is considered in the derivation; however,
the derivation is easily extended to multiple loading
conditions. The displacements of the entire wing for
a given loading condition are denoted by the nodal dis-
placement vector U, and the displacements of the two
substructures are given by the vectors Uj and Usg. The
displacements at the interface of the two substructures
must be equal for the two substructures to be compat-
ible. Those displacements at the interfaces of the two
substructures that must be compatible are chosen in a
predetermined order with signed Boolean matrices de-
noted by B, and By, where the nonzero entries of B;
are equal to +1 and the nonzero entries of By are equal
to —1. The constraints of compatible displacements at
the interface between substructures is then expressed by
B;U; + BoUs = 0. The external loading for the entire
wing is given by the nodal force vector F, and the de-
composition of the external loading is given by vectors
F; and F9 for the two substructures. The decomposi-
tion of the externally applied nodal forces at the inter-
face nodes is arbitrary as long as the sum of the forces
applied to the interface nodes of each substructure is
equal to the actual externally applied forces.

The linear elastic structural response for the entire
wing is determined using a minimum potential energy
formulation. This response is the solution to the un-
constrained minimization problem given by

min (1UTKU - FTU) (1)
U 2

where the first term is the strain energy of the structure,
and the second term is the work done by the external
forces. The necessary conditions for the unconstrained
minimization problem represented by statement (1)
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simplify to the linear equations:
KU=F (2)

where K is the global stiffness matrix. In a substruc-
tural decomposition, a stiffness matrix can be formu-
lated for each substructure. These stiffness matrices
are relative to the substructure nodal displacement vec-
tors U;, and are denoted by K;. Thus a constrained
minimization problem that is equivalent to the problem
given by statement (1) and uses the substructure nodal
displacement vectors is

1 1
: _UTK 2117
(UnU2) (2 KU 45U Ko

_FTU, - FQTUQ) (3)

B;U; +BsUy=0

At first glance, the constrained minimization prob-
lem given by statement (3) appears to be separable, i.e.,
the problem can be decomposed into two distinct min-
imization problems, with design variables U; and Us,
respectively, and a coordination subproblem. However,
the minimization problem for Us would be insoluble
due to the rank deficiency of matrix Ks. Since the final
form of the design decomposition method of the present
paper will be an EP problem, another argument against
the (U1, Us) decomposition can be made based on the
sufficient conditions for the existence of an EP solution
(see ref. 4). The existence theorem for an EP solution
requires that the solution space for the EP subproblem

r{xjin (1/2 Ug‘KQUQ - f"{Ug), where Fs here includes
2

interface forces from substructure 1, be bounded. How-
ever Uy is not bounded as seen from the following argu-
ment. Because substructure 2 has six rigid body modes,
a rigid body matrix Ry can be formed that consists of
the six rigid body modes as column vectors. This rigid
body matrix satisfies the condition KoRy = [0}, thus
the vector Roarg added to any solution to this subprob-
lem will not change the potential energy if the vector
a9 satisfies the scalar equation FgRgag = 0. Since
the vector az is not otherwise restricted, it (and there-
fore Usg) is unbounded, thus the conditions for solution
existence cannot be satisfied.

From the preceding arguments, any decomposition
must explicitly account for the rigid body modes of
the substructures. A decomposition that does this
follows. Let Uy = up + Roag with the supplementary
condition Rgug = 0. The minimization problem given



by statement (3) then becomes

1 1
min (iUTKlUl + EugKQUQ

(U,uz,02)
~F{U; - FJ(uz + R2a2)) (4)
B1U; + Bg(uz + Roas) =0
RgUQ =0
where the condition KoRy = [0] has been utilized,

and the supplementary condition has been added to
the problem given by statement (3). The necessary
conditions for the structural-response problem given by
statement (4) are

KU -F, +Bfa=0

RI(F,-BIX) =0
B1U; + Bs(uz + Roaxg) =0

where X\ are the Lagrange multipliers for the first con-
straint in statement (4), w are the Lagrange multipliers
for the second constraint in statement (4), and the ma-
trix Ko is the augmented stiffness matrix given by

Ko=| ————_ (6)

Because the matrices B; in necessary conditions (5)
are Boolean, the Lagrange multipliers A are simply
the interface forces between the substructures. Using
the second equation in necessary conditions (5), the
condition RgKg = [0], and the fact that the columns
of Ro are linearly independent, the third equation
in necessary conditions (5) implies that the Lagrange
multipliers p are equal to zero.

Two structural-response EP subproblems that are
implied by necessary conditions (5) are those with nec-
essary conditions

K U, =F; - BT (7)
and
- u9g F2 - BgA
Ko | - | = | (8)
7 0

which are solved for U; and (ug, u), respectfully. The
structural-response coordination EP subproblem that
determines A and oo is obtained by substituting the
solutions of equations (7) and (8) into the last two
equations in necessary conditions (5)

A B1K1—1F1+
L T
M| | =|[B2fOJK [FE{O7] | (9)
a2 - RIF,

where the matrix M is given by

BK;'BT+ .
Mo | [BelOIRG [Ba o)™ 1 P
—(BsRy)T (o)

The EP subproblem with necessary conditions given
by equation (8) includes the constraint that uz has no
rigid body modes. This constraint essentially bounds
the solution space, and thus satisfies the requirement
for existence of a solution. The existence of a unique
solution to equation (8) is guaranteed from the linear
independence of the columns of matrix K which results
from augmenting the stiffness matrix Ko with the rigid
body modes Ry that are in its null space. Thus, the
structural response (i.e., nodal displacements) can be
solved using the following steps: 1) factor the matrices
K and K> that are used in equations (7) and (8); 2) use
these factored matrices to formulate the matrix M and
the right hand side of equation (9); 3) solve equation (9)
for X and ag; and 4) solve equations (7) and (8) for U,
and ug, respectively.

Structural Optimization with Constraints Local
to the Substructures

In this section, the structural optimization problem
is decomposed into a set of EP subproblems that are
used to perform the optimization, and the related struc-
tural analysis, of each substructure. Only structural-
sizing design variables, herein termed sizing variables,
such as plate thickness or beam section properties, are
considered in the present derivation. Also, the present
derivation only considers constraints local to the sub-
structures, that is, a constraint relation must explic-
itly depend on the sizing variables and structural re-
sponse of only one substructure. The two-substructure
wing example from the previous section will be used
to demonstrate the present method of decomposition;
however, this method is extended to multiple substruc-
tures in the appendix. The decomposition is derived
from the necessary conditions of a simultaneous anal-
ysis and design formulation (ref. 5). In the present
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simultaneous analysis and design formulation, mini-
mum weight is the design goal, both the structural
displacements and the sizing variables are utilized as
design variables, and the optimization constraints are
the equations governing structural response (treated as
equality constraints) as well as the usual inequality con-
straints that ensure that the design meets the strength,
buckling, and other design requirements. The present
method has the following features: 1) the optimization
of each substructure is independent and can be done in
parallel (although the overall optimization procedure is
still iterative); 2) the resulting design is optimal; 3) the
objective function of each substructure optimization is
the weight of the substructure plus a penalty term de-
rived from an structural-sizing coordination subprob-
lem; 4) the structural-sizing coordination subproblem
is a matrix equation that uses the same matrix M as in
the structural-response coordination subproblem (equa-
tion (10}); and 5) each substructure optimization de-
pends directly on only the sizing variables and displace-
ments of the substructure being optimized.

The local constraint function vectors for substruc-
tures 1 and 2 will be denoted as gj(vy,U;) and
g2(vo, Usg), respectively. The vectors v; and vy are
vectors of sizing variables for the two substructures. In
general, the constraint function vector for the second
substructure is expressed by the relation gs(vg,Us) =
g2(va, u2 + Roag), but, because stress is invariant with
respect to rigid body motions, it simplifies to ga(v2, ug)
for local strength and buckling constraints. The ap-
proach to forming the decomposed optimization prob-
lem is as follows: 1) express the optimal design prob-
lem as a simultaneous analysis and design problem us-
ing necessary conditions (5) for the previously derived
structural-response method as additional constraints;
2) determine the necessary condition equations for this
simultaneous analysis and design problem; 3) reduce the
necessary condition equations for the sizing variables of
each substructure to a form which has a contribution
from the local substructure and a term representing
coupling to other substructures; and 4) treat these re-
duced necessary condition equations as if they are from
an EP problem, and transform the reduced necessary
condition equations to a set of EP subproblems and a
structural-sizing coordination subproblem.

Simultaneous Analysis and Design For-
mulation. The optimal design problem is posed using
the simultaneous analysis and design approach where
necessary conditions (5) that describe the structural
response are formulated as constraints. Thus, the
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problem to be solved is given by

min Wi(vy)+Wa(va)

(v1,v2,Ur,uz,02,A,1)
g1(v1,U) <0
g2(va,uz + Roag) <0
Ki(vi))U;-F,+BTa=0

(11)
) up F, - BIA
Ko(va) | - | = | -=———= =0
n 0

B1U; +Bo(us + Roag) =0
p=0

where the weights W; and W», and the stiffness ma-
trices of the two substructures are explicit functions of
the sizing variables as shown, and the third equation in
necessary conditions (5) is replaced with the equivalent
condition pu = 0.

Necessary Conditions. The Lagrangian func-
tion for this optimization problem is

L =Wi(v1) + Wa(va) + 7] g1(v1, Uy)
+ 4 ga(va, up + Roarp)
+u7 (Kl(vl)Ul —F + BIT/\)
up Fo — BT

+ Vg f(g (V2) N
I 0

+ 67 (B1U; + Ba(uz + Roa)) + nd

In this definition, the quantities ~;, v;, 8, and 1 are La-
grange multipliers for the constraints in statement (11).
Taking the derivatives of the Lagrangian function de-
fined in equation (12) with respect to the design vari-
ables of the optimization problem in statement (11)
gives the following equations which are part of the set



of necessary conditions

6W1 T6g1 TaKlUl T
™l _9
v M T Tay
T
oW, +7T@+VT3K2[ugIOT] _oT
v 2ovy 2 v
T 081 T
IBU +U1K1+6 B; = of
I
o ~ pXp
T_gz T 6TB =0T
Y5 6\12 +U2 K2 + 2 (13)
ngZ Ry + 5TB2R2
B]
ulTBT+u2T - } =07
[0]
. [ 0 o
vy Ko + 77
Iq)(q

where Irxr is the identity matrix of dimension r, p
is the number of degrees-of-freedom for the structural
response of substructure 2, ¢ is the number of rigid body
modes for substructure 2, and the relation u = 0 has
been utilized.

The sensitivity relations for equations (7) and (8)
with respect to the sizing variables will be necessary for
continuing the derivation. These relations are expressed
by

0K, U; dU, o dX

6V1 + K1 dVl + Bl d_V] = [0]
- du T d\
K T OT T - B2
2—[lgf;'———]—+K2 2*3 T TR
2 [0] [0]

Using equations (14), the sensitivity derivatives of the
structural response holding the interactions between the
substructures fixed (i.e., fixed A) are

du,;| _ ~1 0K U,
|, - K oy
522} . r (19
- _10Ko[ul!07]

-1 2
-2 = -K; e Vw28 Il B

o o

Although the total derivative dp/dvs is identically
equal to zero as indicated in equations (14), the re-
stricted derivative du/dvs|) in definitions (15) is not.

Reduction of Necessary Conditions. Pro-

ceeding with the reduction of the necessary conditions,
the Lagrange multipliers v, are obtained from the third

equation in necessary conditions (13)

)
oI = (-,Tagl +6™B ) Ki! (16)

and the Lagrange multipliers v are obtained by com-
bining the fourth and last equations in necessary con-
ditions (13)

E - _
vF = 7T6g2+5TB | of [R5 a7

Substituting equations {16) and (17) into the first and
second equations of necessary conditions (13), respec-
tively, and utilizing definitions (15), gives two of the
reduced necessary conditions

oW, 4 AT agl Og1 dU;
gvi ! Uy dvy |y

+67B, dUl =07
dV]

(18)

oWy + g2 4 %82 Og2 dug
Ove 2 6v 6u2 dv2
du d

TR, Y42 T ot _ o7

+6 B2 dV2 \ 7]2 dV2 \ 0

The final step in reducing the necessary condition equa-
tions is to find expressions for 6 and 172. Substituting
equations (16) and (17) into the sixth equation in nec-
essary conditions (13), and defining the quantity 7o =
- [RgRQ]_I n2 which implies that -7d [RE 0] =
n3 [{0] : Iyxq | K5 ! the following expression is obtained

617 [BiK;'BT + [By | [0]]K3 ! [By | [0]]"

72 —(B2Ry)T
0 = —1 T
- [WJBEZQOT]KQ— [BQHO]]
g -
clraUl 1 1B:1r

(19)
Combining this equation with the fifth equation in
necessary conditions (13) gives the following equation
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for 6 and 12

2
|
I

The matrix M in equation (20) is the same matrix
defined in equation (10).

Transformation to EP Subproblems. The
reduced necessary condition equations (18) can be
transformed into EP subproblems having these equa-
tions as their necessary conditions. Four types of
subproblems result: structural-response subproblems,
structural-sizing subproblems, a structural-response co-
ordination subproblem, and a structural-sizing coor-
dination subproblem. Only the structural-sizing sub-
problems are actually transformed into constrained-
minimization problems. The first step in these trans-
formations is to define approximate models for U; and
uz that do not consider coupling of the substructures.
To fulfill the EP necessary conditions, the approximate
models for U; and ug must have the same values and
the same sensitivity derivatives as the exact responses
for the optimal values of the sizing variables. To solve
the individual subproblems efficiently, only simple mod-
els that are explicit functions of the subproblem sizing
variables are considered. Although many approximate
models are possible (see ref. 6), a simple first-order Tay-
lor series is used in the present derivation. The approx-
imate models are defined by

Uf(v1) = Uy (vi—¥)+ 0y
dv1 A
(21)
A _ dUQ N -
uy (vg) = aval, (ve —V2) + G2

where the displacements with the caret accents and the
restricted derivatives in equations (21) are calculated
at specific values of the sizing variables denoted by
Vv;. Also for compactness, the dependence on these
previously calculated values are not explicitly given in
the function arguments. With these definitions, two
EP structural-sizing subproblems can be formed that
have reduced necessary condition equations (18) as their
necessary conditions. The EP subproblem for the first
substructure is developed from the first equation in

6

equations (18), and is given by the statement

min Wi (v1) + 67B1U{ (v1)
‘ (22)
gi(vi, Uf(vi)) <o

where the Lagrange multipliers for g; are ;. Simi-
larly, the structural-sizing subproblem for the second
substructure is developed from the second equation in
reduced necessary conditions (18), and is given by the
statement

. dp
w. T A T
n‘}lzn 2(va) + 6" Bouj'(ve) + 135 o ) Vo (23)

g2(V2,U§‘(V2) +Roag) <0

where the Lagrange multipliers for go are 9. Equa-
tion (20) is the coordination subproblem that deter-
mines the penalty coefficients 6§ and 7 = —RgRg 12
by utilizing the Lagrange multipliers determined from
solving the subproblems given by statements (22) and
(23). The structural response is given by solving equa-
tions (7), (8), and (9), and the restricted derivatives are
given by definitions (15).

Discussion

Summarizing the salient features of the present
method, a set of interacting EP subproblems, each as-
sociated with a particular substructure except for two
coordination subproblems, is iteratively solved until
the equilibrium solution is achieved. The structural-
response subproblem for each substructure is indepen-
dent of the structural response of the rest of the struc-
ture because the coupling of the structural-response
subproblems is achieved using a set of Lagrange mul-
tipliers which represent forces between the substruc-
tures. A computational advantage is obtained be-
cause the expensive factorization of matrices can be
done in parallel for each substructure. The Lagrange
multipliers representing the forces between substruc-
tures, and the substructure rigid body modes are de-
termined within a structural-response coordination sub-
problem. The optimization of substructures that have
constraints that are local to a substructure is accom-
plished in structural-sizing subproblems in a manner so
that the individual substructure optimizations are in-
dependent of each other, and can be accomplished in
parallel. The computational efficiency is enhanced be-
cause the only structural-response sensitivity derivative
information required is local to the substructure being
optimized. The penalty terms in each structural-sizing
subproblem that represent the coupling of the substruc-
ture optimizations ensure that the overall design is op-
timal. Additional computational advantages may be



accrued because the calculation of the coefficients for
these penalty terms is done in a structural-sizing coor-
dination subproblem that utilizes the same matrix uti-
lized in the structural-response coordination subprob-
lem. The approximate updated sensitivity derivative
method reported in reference 7 may prove to enhance
further the computational efficiency of the method.
Several aspects of the decomposition method require
further research. One aspect that needs attention is the
translation of the theory derived in the present report
into a viable numerical algorithm. This translation im-
plies the need for methods to form and factor the aug-
mented stiffness matrices of the substructures, and to
form and factor the coupling matrix M that is nec-
essary for calculating the substructure interface forces
and rigid body modes, and the penalty terms of the
structural-sizing subproblems. In addition, although
several EP theorems may prove existence of a solution,
in practice the substructural optimizations will require
rational selections of move limits on the sizing vari-
ables, and a strategy for dealing with subproblems hav-
ing no feasible solution (a modification of the method
described in reference 6 that includes a constraint vio-
lation penalty for each structural-sizing subproblem is
presently envisioned). Also, the stability of the solu-
tion process, and the convergence to the equilibrium
solution needs to be studied. Another area of inter-
est is the extension of the method to constraints that
are more general than constraints which are local to a
substructure. The utilization of parallel computers to
implement the method also requires investigation.

Conclusions

A new method for structural analysis and structural
optimization utilizing a substructure-based decomposi-
tion has been derived in detail for two substructures and
extended for multiple substructures. Because the start-
ing point for the decomposition is a simultaneous design
and analysis formulation of the design problem, the so-
lution to the resulting decomposed system of subprob-
lems is optimal. The final form of the design decompo-
sition is a set of loosely coupled subproblems that de-
fine an Equilibrium Programming (EP) problem. Thus,
existence of a solution to the decomposed system can
be studied utilizing EP existence theorems. All of the
structural-response subproblems for the substructures
can be solved independently of each other, as can all of
the structural-sizing subproblems. Thus, significant po-
tential exists for the development of a parallel solution
method that utilizes this decomposition of the optimal
design problem to reduce the solution time for large
problems.



Appendix

Extension of Method to Multiple Substructures

Assume that there are n substructures, and that m substructures (0 < m < n) have rigid body modes when
separated from the rest of the structure. The n; displacement degrees-of-freedom of substructure i are denoted by
U; = (U;,..., Uin, )T. The substructures having rigid body modes are ordered to be the last m substructures. These
substructures have displacements denoted by U; = u;+R;a; where R; is the matrix containing the rigid body modes
of substructure ¢, and R:frui = 0. The equivalencing of degrees-of-freedom at common interface nodes in the different
substructures is represented by the set A of n! 4-tuples defined by A= {({,k,p,q) | j < k and Ujp = Uk} In
the definition of set A, redundancies in the equivalencing of degrees-of-freedom are omitted. For example, a degree-
of-freedom shared by three substructures need only be equivalenced between two pairs of substructures, not all
three pair-wise combinations. The compatibility constraint equations (i.e., the equations that enforce compatibility
between the substructures) are defined by assigning an order to the elements of set A that corresponds to the order
of the compatibility constraint equations. Thus, the r*! compatibility constraint equation will depend on degrees-
of-freedom in substructure j if either the first or second element of the r*! 4-tuple in A is 7. These compatibility
constraint equations are expressed explicitly by defining the signed Boolean matrices B; for j = 1,...,n which have
dimensions n! x nj. Matrix B; has a 1 at location rp if the 7'M 4 tuple in A has the components (J,-,p, ), and it
has a —1 at location rq if the 7P 4-tuple in A has the components (-, j,-,¢). Otherwise, the entries in matrix B,
are zero. Thus, the compatibility constraint equations for all the substructures are symbolically represented by the
system of n! equations:

n
ZB,U,- =0 (A1)
=1

The definition of the Boolean matrix B; in the present section reduces to the previous definition of the Boolean
matrix for the case of only two substructures.
Decomposition of the Structural Response

Utilizing the previously described definitions, the minimization problem for the structural response given by
statement (4) generalizes to:

n—-m n
. 1 1
min Z (iU;'TKiUi - F,TU,-) + Z (5“?Ki“i ~F{ (u; + R’iai)>
(UlpnyUﬂ—MW i=1 i=n—-m+1

Un—-m+1,---,Un,
Cn—m+1,--,0n)

n-m n (A2)
Z B;U; + Z Bj(uj + Rjaj) =0
i=1 Jj=n—m+1
Riju; =0 for i=n-m+1,...,n
The necessary conditions for the minimization problem given by statement (A2) are
K,U;-F;+BfA=0 for i=1,...,m-n
u; Fi - B;TA
Ki|-|~-|=-===-= =0 for i=n-m+1,...,n (A3)
Mi 0

RI(F;-BfA)=0 for i=n-m+1,...,n

along with the first constraint equation given in statement (A2). Here A are the Lagrange multipliers corresponding
to the first constraint equation in statement (A2), u; are the Lagrange multipliers for the last constraint equation
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in statement (A2), and the matrix R,- fori=n-m+1,...,n is the augmented stiffness matrix given by

|k R
Ki=| —____ (A4)
!
T
RT | 0]
Using the second equation in necessary conditions (A43), the condition R?Ki =0 fori=n—-m+1,...,n, and
the fact that the columns of R; are linearly independent, the last equation in necessary conditions (A3) implies that
the Lagrange multipliers p; are equal to zero. The structural responses U; for i = 1,...,n —m, and (u;, g;) for
i=n-—m+1,...,n are found by solving the first and second equations of necessary conditions (A3), respectively,

after the vector \ is determined.

The vector A must be determined simultaneously with the rigid body displacements o; for i = n — m +
1,...,n. This solution is accomplished by substituting the symbolic solutions for U; and u; into the compatibility
constraint equation in statement (A2), and solving this equation simultaneously with the last equation in necessary
conditions {A3). The following matrix equation gives the resulting system:

_ _ —1 =1 T
A S B+ Sy [Bi | [0]JKT[FT 0T
Ap—m+1 - Rg_m+1Fn—m+1
M| An-m+2 | = - RZ—m-{»—QF"_"H'? (A5)
[0 79 L - R;I;F'ﬂ .

where the matrix M is given by

r YT BK BT + ]
imn—m+1 [Bi { [0] ]f(fl [Bi l (0] ]T ~BnomiiRaomi ~PnomeaRn-mis Bt
—(Bn—m+1R/n——m+1) [0] [0] [0]
—(Bn—m+2R/n—m+2)T [0] [0] [0]
i —(BnRp)T (0] (0] o |
(A6)

Equations (A5) and (A6) are the generalizations of equations (9) and (10) for multiple substructures.

Structural Optimization with Constraints Local to the Substructures

As in the two-substructure example, only constraints that are local to the substructures (i.e., that can be expressed
using constraint functions of the form g;(v;,U;) for ¢ = 1,...,n) are considered in the structural optimization
process. The steps utilized when there are multiple substructures are nearly identical to those performed for the
two-substructure example. The simultaneous analysis and design formulation is a generalization of the problem of

9



statement (11)

(V1,0 Vn,

Ul y~~-,Un—my
Un-—m+1,---Un,
An—m41,-,Qn,

/\aﬂn-m+1»~--vun)

n
min Z Wi (Vi)
=1

gi(v;,U;) <0 for i=1,....,n—-m
gi(vi,u; + Rja;) <0 for i=n-m+1,...,n
Ki(vi)Ui—Fi-i*B?A:O for i=1,...,n—-m
) u; F; -BIx
Ki{vi)| - | = | =———= =0 for i=n-m+1,...,n
J75 0
n-m n
B;U; + >  Bj(u+Rja;)=0
1=1 j=n—-m+1

ui =0 for i=n-m+1,...,n

The Lagrangian function for this optimization problem is defined as

n n
L ZZWt vl Z 71 gi vlvU ) + Z 7;Tgi(vi)ui +R1a‘l)

=1 t=n-~-m+1
n-m n ) u; F; - BT
+ 3 (KU -Fe+BIA) + > o] [Riw) | - | - | ————-
i=1 i=n—m+1 i 0
n—m n n
+67 | Y BU + Y Bi(wj+Rjey) |+ Y. ofm
t=1 j=n—-m+l i=n—m+1

and the following equations result from the optimality necessary conditions:

Wi | 08 1K o .
6vl + Bv; +y Bv, =0 for i=1,...,n—m
T
- 70
(2}‘:1+7Tg§l+ —[8v_,L——]_ for i=n-m+1,...,n
7,Tglg;-+—uTK +6TB; =0T for i=1,...,n—m
. ~ Pi XDy
—7?%+uiTKi ———|+6TB; =0T for i=n—-m+1,...,n
Ou; 0]

nglR +6TBR,—0T for i=n—-m+1,...,n
n—m n BiT
BT+ Y J[ﬁzw
i=1 i=n—m+1 (0]
T ¥ [0] T T .
v;Ki|-———{+mn; =0 for i=n-m+1,...,n
IQz‘XQ;'

(A7)

(A8)

(49)

where p; is the number of degrees-of-freedom for the structural response of substructure ¢, and g; is the number

of rigid body modes in substructure i. This system of equations generalizes necessary conditions (1

10

3), and the



constraint p; = 0 for i = n — m + 1,...,n has been applied. The sensitivity derivatives of the structural response
holding the interactions between the substructures fixed (i.e., fixed A) are defined as in definitons (15)

_, 0K, U;

=-K '"——— fi i =1,...,n—
i, i v, or 1 n—m
du; 5 - (A10)
v 0
%E—;— = K: —[B—V—,!—]_ for t=n—-m+1,...,n
Vil
The Lagrange multipliers v; are obtained from the equations in necessary conditions (A9)
vl = - (yTgIgj’ +6TB>K‘ for i=1,....n—-m
5 {A11)
vl =- [‘7T6g’+6TB | niT]f{i_l for i=n-m+1,...,n
which are utilized with definitions (A10) to simplify the first two equations in necessary conditions (A9)
oW; dgi  9gi dU;
v, T (Bv T U; avi |,
+67B; dU’ =0f for i=1,...,n—m
dv,- A
(A12)
oW, T ogi L 98 ogi du;
av; t \dv; = By, dv,
+6TB; du, +171'T% =0T for i=n-m+1,...,n
As in the case of only two substructures, the final step is to determine values for  and n; fori = n—m+1,...,n. One

equation necessary for determining these quantities is found by substituting expressions for v; from equations (A11)
into the sixth equation in necessary conditions (A9). The resulting equation becomes

T - o — T
6 En mBK IBT+21 =n- m+1[ i“o]]Kil[Bi“O]]
'Fln—m+1 _(Bn—m+1Rn—m+1)T —
Tn—m+1 —(BaRy)T (A13)
n—m n T
e)
~T 8i vr—1RT _ TO -1 |
_ZzaUKB > [7135-:0]K [Bl[o]]
i=1 i=n—m+l
where the quantities 7); for i = n —m + 1,...,n are defined by 7; = — [R?Ri]_l 7;- Combining equation (A413)

with the fifth equation in necessary conditions (A9) yields the following equation that is solved to determine the
valuesford and n; fori=n—m+1,...,n

] [ ) B i [

T
- Ogn—
M|Tm-m+1]| = <7g—m+16a__23*_:—iRﬂ—m+l> (A14)

I fn I (75%%R“)T .
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Formulation of Decomposition as an Equilibrium Programming Problem

The EP subproblems for n substructures are formulated by first defining approximate models for the displace-
ments of the substructures that do not consider coupling between substructures. For example, linear approximate
models may be used that have the form

U{‘(vi) = ?j' (vi—\"i)+fJi for 1=1,...,n—m

ilA

' (A15)
uf(vi)z%/\(vi—f'i)—’rﬁi for i=n-m+1,...,n

i

where the variables having caret accents are as defined previously, and the restricted derivatives are given by
definitions (A10). These approximate models are utilized in formulating EP structural-sizing subproblems for the n
substructures whose necessary conditions are the same as the equations given in reduced necessary conditions (A12).
These structural-sizing subproblems are defined for the substructures having no rigid body modes (i.e., for
i=1,...,n—m)as

min W1(vi) + 6TB; U (vy)

(A16)
gi(vi, Uf(vi)) < 0
The structural-sizing subproblems for the substructures that have rigid body modes (ie.,fori=n-m+1,...,n)
are defined as p
i Wa(vy) + T Bauf(vy) + nf 5] o,
- Vil (A17)

gi(vi,ul(vi) + Rja;) <0

The Lagrange multipliers for g; in both statements (A16) and (A17) are represented by the vectors 4; which
are needed to form the right side of equation (A14). The structural-sizing coordination subproblem given by
equation (A14) determines the quantities § and #; for i = n — m + 1,...,n. The terms 7; are determined
from n; = —R?Ri 77;. The structural-response subproblems are given by the first two equations in necessary
conditions (A3), and the structural-response coordination subproblem is given by equation (A5).
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Abstract

Quantum-mechanical optical model methods for calculating cross
sections for the fragmentation of galactic cosmic ray nuclei by hy-
drogen targets are presented. The fragmentation cross sections are
calculated with an abrasion-ablation collision formalism. Elemental
and isotopic cross sections are estimated and compared with mea-
sured values for neon, sulfur, and calcium ions at incident energies
between J00A MeV and 910A MeV. Good agreement between theory
and experiment is obtained.

Introduction

The fragmentation of galactic cosmic ray (GCR) nuclei in hydrogen targets is an important
physical process in several areas of space radiation physics research. In astrophysics, it is crucial
to understanding cosmic ray propagation and source abundances (ref. 1) because interstellar
hydrogen is the major type of material encountered by GCR nuclei traveling through the
universe. In studies of spacecraft shielding for interplanetary missions (ref. 2), hydrogen has
been found to be the most effective GCR shield material per unit mass. In addition, hydrogen is
a major constituent of human tissue. Therefore, accurate cross sections are needed for properly
estimating GCR radiation exposures to critical body organs (ref. 3).

Previously, cross-section predictions used in these studies have been obtained from semi-
empirical formulations (refs. 4 to 7). The most commonly used formulation is the one by
Silberberg and collaborators (ref. 5). The most accurate formulation appears to be a recent
one by Webber and collaborators (ref. 6). None are based upon fundamental physics. All have
numerous parameters that are adjusted as necessary to fit existing measurements.

The production of fragments in peripheral, relativistic heavy ion collisions has been the
subject of numerous theoretical and experimental investigations for about 2 decades. Many of
these investigations were summarized in reviews published during this period (refs. 7 to 10).
Early attempts to explain fragmentation used statistical models (refs. 11 and 12). These were
followed by a two-step abrasion-ablation model (ref. 13), which was based upon earlier work by
Serber in high-energy, inelastic nuclear collisions (ref. 14).

The main shortcoming associated with the use of early abrasion-ablation models for nuclear
fragmentation on hydrogen targets is the unrealistically large proton radius needed for the
prefragment excitation energy estimate. This radius is dictated by the reliance on excess surface
energy of the misshapen liquid drop as the only source of prefragment excitation.

This shortcoming in the model can be rectified by considering an abrasion-ablation-
frictional-spectator-interaction (FSI) model where the abrasion stage is described by a quantum-
mechanical optical model formalism and the ablation stage is modeled with cascade-evaporation
techniques. There is no excess surface area energy. Instead, the prefragment excitation energy
is assumed to be provided by FSI contributions from the abraded nucleons. This fragmentation
model is proposed in this report.

Abrasion-Ablation Models

In an abrasion-ablation model, the projectile nuclei, moving at relativistic speeds, collide
with stationary target nuclei. In the abrasion step (particle knockout), those portions of the
nuclear volumes that overlap are sheared away by the collision. The remaining projectile piece,
called a prefragment, continues its trajectory with essentially its precollision velocity. Because of
the dynamics of the abrasion process, the prefragment is highly excited and subsequently decays



by the emission of gamma radiation or nuclear particles. This step is the ablation stage. The
resultant isotope is the nuclear fragment whose cross section is measured. The abrasion step is
often formulated with methods obtained from quantum scattering theory (refs. 15 and 16) or
with classical geometry arguments (refs. 13 and 17). The ablation step is typically modeled
with compound nucleus decay (refs. 13 and 18) or combined cascade-evaporation (ref. 19)
methods. Other approaches based upon nuclear Weiszéicker-Williams methods (ref. 20) and
nucleon-nucleon cascade plus statistical decay models (ref. 21) have also been proposed.

Although abrasion-ablation fragmentation models have been quite successful in predicting
fragment production cross sections, their predictive accuracy is hampered by the need to estimate
the (unknown) prefragment excitation energy. Various models have been developed for this
purpose (refs. 13, 15, 18, and 22). The most widely used excitation energy formalism (ref. 13)
treats the fragmenting nucleus as a misshapen liquid drop whose excitation is given by the excess
surface energy resulting from the abrasion step. Although this method worked fairly well for
nucleus-nucleus fragmentations, its use in nucleus-hydrogen collisions, among other difficulties,
required an artificially large proton radius (ref. 13).

When it was recognized that additional excitation energy was required to improve the
agreement between theory and experiment for nucleus-nucleus collisions, the concept of FSI
energy was introduced (ref. 22). This concept is based upon the assumption that some abraded
nucleons are scattered into rather than away from the prefragment, thereby depositing additional
excitation energy. This concept significantly improved the agreement between theory and
experiment.

Over the past 10 years, we have formulated an optical model abrasion-ablation-FSI descrip-
tion of fragmentation in relativistic nucleus-nucleus collisions that is used to predict fragment
production cross sections (refs. 16 and 23 to 42) and momentum distributions of the emitted
fragments (refs. 43 through 47). In the present work, this fragmentation model is modified to
make it applicable to nucleus-nucleon collisions. As previously discussed, the main shortcoming
associated with the use of early abrasion-ablation models for nuclear fragmentation on hydrogen
targets is the unrealistically large protoen radius needed for the prefragment excitation energy
estimate. This radius is dictated by the reliance on excess surface energy of the misshapen liquid
drop as the only source of prefragment excitation.

This shortcoming in the model can be rectified by considering the physics of the fragmentation
process. For instance, a picture of overlapping nuclear volumes being sheared off may be
reasonable for heavier nuclei colliding with each other, but it is not rcasonable for a single
nucleon striking another nucleus. Instead, a more reasonable physical picture involves individual
collisions between the projectile constituents and the target proton. Some struck projectile
nucleons exit the fragmenting nucleus without further interaction, and some interact one or more
times with the remaining constituents before departing. The remaining nucleus (prefragment), in
an excited state because of the energy deposited during the collision, then deexcites by particle-
or gamma-emission processes. This picture is easily described by an abrasion-ablation-FSI model
where the abrasion stage is described by a quantum-mechanical optical model formalism and
the ablation stage is modeled with cascade-evaporation techniques. There is no excess surface
area energy. Instead, the prefragment excitation energy is assumed to be provided by FSI
contributions from the abraded nucleons. This fragmentation model is proposed in this report.

Theory

In the nucleus-nucleus optical potential formalism (ref. 29), the cross section for producing,
by abrasion, a prefragment of charge Zpp and mass App is given by

san Zoe vy = (N ) (7) [ din - ryr iz e (1

n
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where
T(b) = exp[—-Ar onn(e)I(b)] (2)

and
I(b) = [2nB(e)] /2 / dzo / Berpr(er) / Bypp(b + 70 +y +&r)expl-y?/2B(e)]  (3)

The nuclear number densities p;(i = P or T') are obtained from the appropriate charge densities
by an unfolding procedure (ref. 16). The constituent-averaged nucleon-nucleon cross sections
onn(e) are given in reference 48. Values for the diffractive nucleon-nucleon scattering slope
parameter B(e) are obtained from the parameterization in reference 49.

In equation (1) a hypergeometric charge dispersion model is chosen to describe the distribu-
tion of abraded nucleons. The model assumes that z out of Z projectile protons and n out of N
projectile neutrons are abraded where

N+ Z=Ap (4)
App=Ap-—n—z (5)

and ( B) denotes the usual binomial coefficient expression from probability theory.

For nuclear collisions with hydrogen (proton) targets, the appropriate target number density
to use is given by the Dirac delta function

pr(€r) = 6(&T) (6)

Inserting equation (6) into equation (3) yields

Ip(b) = 27 B(e)] 7/ / dz / d*ypp(b + 2y +y) exp[~y°/2B(e)] (7)
With Ay = 1, equation (2) becomes

T'(b) = exp[~oyn(e)I(b)] (8)

The nucleus-hydrogen abrasion cross sections are calculated with equations (1), (7), and (8).

Prefragment excitation energies are estimated from the FSI energy contribution
Eexc = EFpgy (9)

which is calculated with the model of Rasmussen (ref. 22). With this model, the rate of energy

transfer to the prefragment is
E_E
dr  4X

1 300
A= PN RS 11
(U]\/N = ) (11)

(10)

where




yields

E
E _ 1575 MeV/fm (12)
dr

If a spherical nucleus of uniform density is assumed, the average energy deposited per
interaction is

(Epgy) ~ 10.24/3 MeV (13)

Therefore, the abrasion cross section for a prefragment species (Zpp, App) which has
undergone ¢ frictional spectator interactions is

n-+z _
U‘dbr(ZPF’ APF’ Q) = < q ) (1 - PCSC)Q(PGSC)n+Z qUabr(ZPFﬁAPF) (14)

where 0 < ¢ < n + z, and Pegc is the probability that an abraded nucleon escapes without
undergoing any frictional spectator interactions (ref. 34). In this report, the choice of Pesc = 0.5
follows from the original work of Rasmussen (ref. 22). Such a value assumes that the nuclear
surface has no curvature, and this value should be reasonably correct for heavy nuclei. For
lighter nuclei, the surface can exhibit significant curvature such that the value of P can be
larger than 0.5. Methods for estimating Pesc When nuclear surface curvature is considered have
been formulated by Vary and collaborators (ref. 50).

Depending upon the magnitude of its excitation energy, the prefragment will decay by
emitting nucleons, composites, and gamma rays. The probability a;;(¢g) that a prefragment
species j. which has undergone g frictional spectator interactions, deexcites to produce a
particular final fragment of type ¢ is obtained with the EVA-3 Monte Carlo cascade-evaporation
computer code (ref. 19). Therefore, the final hadronic cross section for production of the type 1
isotope is obtained from

n+z
ome(Zi, Ai) = Zzaz‘j(Q)Uabr(Zijja(I) (15)

i =0

where the summation over j accounts for contributions from different prefragment isotopes j,
and the summation over g accounts for the effects of different FSI excitation energies. Finally,
the elemental production cross sections are obtained by summing all isotopes of a given element
according to

onue(Z;) = ZUY}UC(Zi?Ai) (16)
Aj

Results

Figures 1 and 2 show isotope production cross sections obtained with equation (15) for 32g
beams at 400A MeV fragmenting in hydrogen targets. The figures also show recently reported
experimental results (ref. 51). For clarity, the experimental error bars are not plotted. The 329
nuclear density used in the calculation was a Woods-Saxon form with skin thickness and half-
density radius obtained from reference 48. The agreement between theory and experiment is
quite good, especially considering that no arbitrary parameters are in the theory. Quantitatively,
a distribution analysis of the cross-section differences between theory and experiment finds that
32 percent agree within the experimental uncertainties, 50 percent agree within a 25-percent
difference, nearly 75 percent agree within a 50-percent difference, and over 82 percent agree
within a factor of 2.

Elemental production cross-section predictions obtained from equation (16) are displayed
in figures 3 to 8 for ?’Ne beams at 400A MeV and 910A MeV and for 325 and 0Ca beams at
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400A MeV and 800A MeV incident kinetic energies colliding with hydrogen targets. The nuclear
densities used in the calculations were Woods-Saxon forms with skin thicknesses and half-density
radii again obtained from reference 48. These experimental data were taken from reference 51.
Overall, the agreement between theory and experiment is good, although the theory tends to
predict values that are slightly larger than the reported measurements.
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Figure 1. Isotope production cross sections for 400A MeV 328 fragmentation in hydrogen targets for isotopes of P,
Al, Na, and F fragments.
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Figure 2. Isotope production cross sections for 400A MeV 328 fragmentation in hydrogen targets for isotopes of Si,
Mg, Ne, and O fragments.
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Figure 3. Element production cross sections for 400A MeV 20Ne fragmentation in hydrogen targets.
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Figure 4. Element
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production cross sections for 910A MeV 2'Ne fragmentation in hydrogen targets.
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Figure 5. Element production cross sections for 400A MeV 328 fragmentation in hydrogen targets.
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Figure 6. Element production cross sections for 800A MeV 32§ fragmentation in hydrogen targets.
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Figure 7. Element production cross sections for 400A MeV 0 Ca fragmentation in hydrogen targets.
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Figure 8. Element production cross sections for 800A MeV 40Ca fragmentation in hydrogen targets.

Concluding Remarks

A simple, yet accurate, optical potential abrasion-ablation fragmentation model has been
developed for use in studies of galactic cosmic ray breakup on hydrogen targets. The model
has no arbitrarily adjusted parameters. Model predictions have good agreement with recent
laboratory measurements of elemental and isotopic production cross sections for the fragmenting
of neon, sulfur, and calcium beams on hydrogen targets.

NASA Langley Rescarch Center
Hampton, VA 23681-0001
October 28, 1993
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